11/12/13

Summary of Memory Layout Data Representations
* Most details abstracted away by IR " What do different types look like in
format. memory?

* Remember: Machine typically supports only limited

- Parameters start at fp + 4 and grow upward. types:
* Fixed-width integers: 8-bit, 16-bit- 32-bit,
signed, unsigned, etc.
* Floating point values: 32-bit, 64-bit, 80-bit
* You will need to write code to assign IEEE 754.
variables to these locations. * How do we encode our object types using
these types?

- Locals start at fp — 8 and grow downward.

+ Globals start at gp + 0 and grow upward.

Encoding Primitive Types

Primitive integral types (byte, char, short, int,
long, unsigned, uintlé_t, etc.) typically map
directly to the underlying machine type.

Primitive real-valued types (float, double, long
double) typically map directly to underlying
machine type.

Pointers typically implemented as integers holding

memory addresses.

* Size of integer depends on machine architecture; hence
32-bit compatibility mode on 64-bit machines.

Encoding Arrays

+ C-style arrays: Elements laid out consecutively in memory.

Arr[0] Arr[1] Arr[2] . Arr[n-1]

+ Java-style arrays: Elements laid out consecutively in memory with

size information prepended.

n Arr[0] Arr[1] Arr[2] .. Arr[n-1]

* D-style arrays: Elements laid out consecutively in memory; array

variables store pointers to first and past-the-end elements.

Arr[0] Arr[1] Arr[2] .. Arr[n-1]
A A

First Past-End

+ (Which of these works well for Decaf?)

11/12/13

Encoding Multidimensional Arrays

- Often represented as an array of arrays.

- Shape depends on the array type used.

How do you know

« C-style arrays:
int a[3][2];

where to look for an
element in an array
like this?

a[0][0] a[0][1] a[1][0] a[1l]l[1] a[2][0] a[2][1]

Array of size 2 Array of size 2 Array of size 2

Encoding Multidimensional Arrays

Often represented as an array of arrays.
Shape depends on the array type used.

Java-style arrays:
int[][] a = new int [3][2];

B8 2 a[0][0] a[o0][1]
)

af[ll] _ » 2 af[1][0] af[1][1]

- 2 af2][0] a[2][1]

a[2]

11/12/13

Implementing Objects

Objects are Hard

« It is difficult to build an expressive and
efficient object-oriented language.

* Certain concepts are difficult to implement
efficiently:
+ Dynamic dispatch (virtual functions)
- Interfaces
« Multiple Inheritance
« Dynamic type checking (i.e. instanceof)

* Interfaces are so tricky to get right we won't
ask you to implement them in PP4.

11/12/13

Encoding C-Style structs

* A structis a type containing a
collection of named values.

* Most common approach: lay each

field out in the order it's declared.
struct MyStruct
int { myInt;
char myChar;
double myDouble;

4 Bytes 1 8 Bytes

Accessing Fields

* Once an object is laid out in memory, it's just

a series of bytes.

* How do we know where to look to find a

particular field?

4 Bytes 1 8 Bytes

- Idea: Keep an internal table inside the

compiler containing the offsets of each field.

+ To look up a field, start at the base address of

the object and advance forward by the
appropriate offset.

11/12/13

11/12/13

Field Lookup OOP without Methods

struct MyStruct
i;';r{y’;"' + Consider the following Decaf code:
N double z; class Base {
int x;
int y;

4 Bytes 1 8 Bytes }

class Derived extends Base {

MyStruct* ms = new MyStruct; int z;

ms->x = 137; store 137 0 bytes after ms }

ms->y = 'A'; store 'A' 4 bytes after ms
ms->z = 2.71 store 2.71 8 bytes after ms - What will Derived look like in memory?

Memory Layouts with Inheritance

class Base {

int x;
int y;
}i
4 Bytes 4 Bytes ‘
4 Bytes 4 Bytes 4 Bytes

éass Derived extends Base {
int z;

};

Field Lookup With Inheritance

class Base {
int x;

|

V/— int y;
b class Derived extends Base {

4 Bytes I 4 Bytes ‘ int z;
s
4 Bytes 4 Bytes 4 Bytes
Base ms = new Base;
ms.x = 137; store 137 0 bytes after ms

ms.y = 42; store 42 4 bytes after ms
Base ms = new Derived;

ms.x = 137; store 137 0 bytes after ms
ms.y = 42; store 42 4 bytes after ms

11/12/13

Single Inheritance in Decaf

* The memory layout for a class D that extends
B is given by the memory layout for B
followed by the memory layout for the
members of D.

« Actually a bit more complex; we'll see why later.

Rationale: A pointer of type B pointing at a D

object still sees the B object at the beginning.

Operations done on a D object through the B
reference guaranteed to be safe; no need to
check what B points at dynamically.

What About Member Functions?

* Member functions are mostly like regular

functions, but with two complications:
How do we know what receiver object to
use?

How do we know which function to call at
runtime (dynamic dispatch)?

11/12/13

this is Tricky

- Inside a member function, the name this
refers to the current receiver object.

* This information (pun intended) needs to be
communicated into the function.

- Idea: Treat this as an implicit first
parameter.

* Every n-argument member function is really
an (n+1)-argument member function whose
first parameter is the this pointer.

this is Clever

class MyClass {
int x;
void myFunction(int arg) {
this.x = arg;
}
}

MyClass m = new MyClass;
m.myFunction (137) ;

11/12/13

this is Clever

class MyClass {
int x;

}

void MyClass myFunction (MyClass this,
this.x = arg;

}

MyClass m = new MyClass;
m.myFunction (137) ;

int argqg) {

this is Clever

class MyClass {
int x;

}

void MyClass myFunction (MyClass this,
this.x = arg;

}

MyClass m = new MyClass;
MyClass myFunction(m, 137);

int arg) {

11/12/13

10

this Rules

‘When generating code to calla member
function, remember to pass some object as the
this parameter representing the receiver
object.

°Inside of a member function, treat this as just
another parameter to the member function.

‘When implicitly referring to a field of this, use
this extra parameter as the object in which the
field should be looked up.

Implementing Dynamic Dispatch

* Dynamic dispatch means calling a
function at runtime based on the dynamic
type of an object, rather than its static

type.
- How do we set up our runtime

environment so that we can efficiently
support this?

11/12/13

11

11/12/13

An Initial Idea Analyzing our Approach

« At compile-time, get a list of every defined class. * This previous idea has several serious

+ To compile a dynamic dispatch, emit IR code for problems.
the following logic: What are they?

« It's slow.
if (the object has type A . .

(J) ype A)) * Number of checks is O(C), where C is the number
call A's version of the function of classes the dispatch might refer to.

else if (the object has type B) + Gets slower the more classes there are.
call B's version of the function

It's infeasible in most languages.
o ()
else if (the object has type N) What if we link across multiple source files?

call N's version of the function. - What if we support dynamic class loading?

12

An Observation

* When laying out fields in an object, we gave
every field an offset.

* Derived classes have the base class fields in
the same order at the beginning.

Layout of Base ’ Base.x l Base.y

Layout of Derived Base.x Base.y Derived.z

* Can we do something similar with functions?

Virtual Function Tables

class Base { class Derived extends Base {
int x; int y;
void sayHi () { void sayHi () {
Print ("Base") ; Print ("Derived") ;

} }

Base.x

Base.x Derived.y

Code for
Base.sayHi

Code for
Derived.sayHi

11/12/13

13

Virtual Function Tables

class Base {
int x;
void sayHi ()

class Derived extends Base {
int y;
void sayHi () {

Print ("Derived") ;

Print ("Base");

}

Code for
Base.sayHi

Code for
Derived.sayHi

Base.x

Base.x Derived.y

Base b = new Base;

b.sayHi();

Let fn = the pointer 0 bytes after b

Call fn(b)

Virtual Function Tables

class Base {
int x;
void sayHi ()
Print ("Base") ;

}

Code for
Base.sayHi

Code for
Derived.sayHi

class Derived extends Base {
int y;
void sayHi () {

Print ("Derived") ;

Base.x

Base.x |Derived.y

Base b = new Derived;

b.sayHi();

Let fn = the pointer 0 bytes after b

Call fn(b)

11/12/13

14

More Virtual Function Tables

class Base {

int x;
void sayHi () {
Print ("Hi Mom!");
}
Base clone() {

return new Base;

}

class Derived extends Base
{ int vy;

Derived clone () {
return new Derived;

}

class Base {

} }
} }
Code for
Base.sayHi
Code for
Base.clone

More Virtual Function Tables

class Derived extends Base
int x; { int vy;
void sayHi () {

Print ("Hi Mom!");
}
Base clone() {

return new Base;

Derived clone () {
return new Derived;

Base.x

Code for
Derived.clone

11/12/13

15

More Virtual Function Tables

class Base { class Derived extends Base
int x; { int vy;
void sayHi () {

Print ("Hi Mom!"™);
}
Base clone() {

return new Base;

Derived clone () {
return new Derived;

Code for
Base.sayHi

Code for
Base.clone

Code for
Derived.clone

Base.x

Derived.y

Virtual Function Tables

* Avirtual function table (or vtable) is
an array of pointers to the member
function implementations for a
particular class.

« To invoke a member function:

* Determine (statically) its index in the vtable.

* Follow the pointer at that index in the
object's vtable to the code for the function.

« Invoke that function.

11/12/13

16

Analyzing our Approach

Advantages:

« Time to determine function to call is O(1).
+ (and a good O(1) too!)

What are the disadvantages?

Object sizes are larger.

+ Each object needs to have space for O(M) pointers.

Object creation is slower.

* Each new object needs to have O(M) pointers set,
where M is the number of member functions.

A Common Optimization

class Base { class Derived extends Base
int x; { int vy;
void sayHi () {
Print ("Base");
}
Base clone () {
return new Base;

Derived clone () {
return new Derived;

Code for
Base.sayHi

Code for
Base.clone

Code for
Derived.clone

Base.x

Derived.y

11/12/13

17

A Common Optimization

class Base ({ class Derived extends Base
int x; { int y;
void sayHi () |

Print ("Base") ;

}

Base clone () {
return new Base;

} }

Derived clone () {
return new Derived;

Code for
Base.sayHi

Code for
Base.clone

Base.x

Code for
Derived.clone

Derived.y

Objects in Memory

Code for
Base.sayHi

Code for
Base.clone

Base.x

Derived.y

Code for
Derived.clone

Base.x

Derived.y

11/12/13

18

Dynamic Dispatch in O(1)

* Create a single instance of the vtable for each
class.

* Have each object store a pointer to the vtable.

* Can follow the pointer to the table in O(1).
« Can index into the table in O(1).

* Can set the vtable pointer of a new object in
O(1).

« Increases the size of each object by O(1).

* This is the solution used in most C++ and

Java implementations.

Vtable Requirements

We've made implicit assumptions about our
language that allow vtables to work correctly.

What are they?
Method calls known statically.

We can determine at compile-time which methods
are intended at each call (even if we're not sure
which method is ultimately invoked).

Single inheritance.

* Don't need to worry about building a single vtable
for multiple different classes.

11/12/13

19

Dynamic Type Checks

* Many languages require some sort of
dynamic type checking.

« Java's instanceof, C++'s dynamic_cast, any
dynamically-typed language.

« May want to determine whether the
dynamic type is convertible to some other
type, not whether the type is equal.

« How can we implement this?

}

A Pretty Good Approach

class A {

void

class B

void

class C

void

class D

}

void

class E

}

void

£0 {1}
extends A {

£0 {1}

extends A {
£0 {1}

extends B {
£0 {1}

extends C {
£0 {}

Parent

Parent

11/12/13

20

Simple Dynamic Type Checking

* Have each object's vtable store a pointer to
its base class.

« To check if an object is convertible to type S
at runtime, follow the pointers embedded in
the object's vtable upward until we find S or
reach a type with no parent.

* Runtime is O(d), where d is the depth of the
class in the hierarchy.

A Reminder: Object Layout

Field O

Field N

| Vesblex

Field O

Field N

11/12/13

21

TAC for Objects, Part I

class A {
void fn(int x)
int vy;
y = X;

}

int main ()
{ A a;
a.fn(137);

{

_A.fn:
BeginFunc 4;
y = x;/
EndFunc;

main:
BeginFunc 8;
_t0 = 137;
PushParam _t0;
PushParam a;
LCall _A.fn;
PopParams 8;
EndFunc;

TAC for Objects, Part II

class A {

int y;

int z;

void fn (int x)
y = %X;
X = z;

}

int main ()
{ A a;
a.fn(137);

{

_A.fn:
BeginFunc 4;
*(this + 4) = x;
x = *(this + 8);
EndFunc;

main:
BeginFunc 8;
_t0 = 137;
PushParam _tO0;
PushParam a;
LCall _A.fn;
PopParams 8;
EndFunc;

11/12/13

22

Memory Access in TAC

* Extend our simple assignments with
memory accesses:

var = *var,

1

var = + constant)
1 * (var

*var é vat

-

*(var, + constant) =

You will need to translate field accesses
into relative memory accesses.

TAC for Objects, Part III

class Base
void { hi()
Prijft ("Base") ;
}
}

class Derived extends Base{
void hi() {
Print ("Derived") ;
}
}

int main() {
Base Db;
b = new Derived;
b.hi();

_Base.hi:
BeginFunc 4;
t0 = "Base";

PushParam _t0;
LCall _PrintString;
PopParams 4;
EndFunc;

Vtable Base = _Base.hi,

7

_Derived.hi:
BeginFunc 4;
_t0 = "Derived";
PushParam _t0;
LCall _PrintString;
PopParams 4;
EndFunc;

Vtable Derived = Derived.hi,

’

11/12/13

23

TAC for Objects, Part III

class Base
void { hi()
Prift ("Base") ;

class Derived extends Base{
void hi () {
Print ("Derived") ;

int main() {
Base b;
b = new Derived;
b.hi();

main:
BeginFunc 20;
_t0 = 4;
PushParam _tO0;
b = LCall _Alloc;
PopParams 4;
_tl = Derived;
*b = _tl;
_t2 = *b;
_t3 = * t2;
PushParam b;
ACall _t3;
PopParams 4;
EndFunc;

What's going

on here?

Dissecting TAC

Derived Vtable

- Code for int main() A{
Derived.hi Base b;
b = new Derived;

b.hi();
}

main:
BeginFunc 20;
_to = 4;
PushParam _tO0;
b = LCall _Alloc;
PopParams 4;
_tl = Derived;
*b = _tl;
_t2 = *b;
_t3 = *_t2;
PushParam b;
ACall _t3;
PopParams 4;
EndFunc;

11/12/13

24

Dissecting TAC

Derived Vtable

- Code for int main() {
Derived.hi Base b;
b = new Derived;

b.hi();
fp of caller :
main:
ra of caller BeginFunc 20;
t0 = 4;

PushParam _tO0;
b = LCall _Alloc;
PopParams 4;
_tl = Derived;
*b = _tl;

_t2 = *b;

_t3 = *_t2;
PushParam b;
ACall _t3;
PopParams 4;
EndFunc;

Dissecting TAC

Derived Vtable

- Code for int main() {
Derived.hi Base b;
b = new Derived;

b.hil();
fp of caller !
main:
ra of caller BeginFunc 20;
t0 = 4;

PushParam _tO0;
b = LCall _Alloc;
PopParams 4;
_tl = Derived;
*b = _tl;

_t2 = *b;

_t3 = *_t2;
PushParam b;
ACall _t3;
PopParams 4;
EndFunc;

11/12/13

25

Dissecting TAC

Derived Vtable

Code for int main() {
Derived.hi Base b;
b = new Derived;
b.hi();
fp of caller }
ra of caller main:
BeginFunc 20;
t0 = 4;

PushParam _tO0;
b = LCall _Alloc;
PopParams 4;
_tl = Derived;
*b = _tl;

_t2 = *b;

_t3 = *_t2;
PushParam b;
ACall _t3;
PopParams 4;
EndFunc;

Dissecting TAC

Derived Vtable

Code for int main() {
Derived.hi Base b;
b = new Derived;
b.hi();
fp of caller }
ra of caller main:
BeginFunc 20;
t0 = 4;

PushParam _tO0;
b = LCall _Alloc;
PopParams 4;
_tl = Derived;
*b = _tl;

_t2 = *b;

_t3 = *_t2;
PushParam b;
ACall _t3;
PopParams 4;
EndFunc;

11/12/13

26

Dissecting TAC

int main() {

Derived Vtable

Code for

Derived.hi Base b;
b = new Derived;
b.hi();
fp of caller }
ra of caller main:
BeginFunc 20;
t0 = 4;

PushParam _tO0;
b = LCall _Alloc;
PopParams 4;
_tl = Derived;
*b = _tl;

_t2 = *b;

_t3 = *_t2;
PushParam b;
ACall _t3;
PopParams 4;
EndFunc;

Dissecting TAC

Derived Vtabl i i
erive able int main() {

Code for

Derived.hi Base b;
b = new Derived;
b.hi();
fp of caller }
ra of caller main:
BeginFunc 20;
t0 = 4;

PushParam _to;
b = LCall _Alloc;
PopParams 4;
_tl = Derived;
*b = _tl;

_t2 = *b;

_t3 = *_t2;
PushParam b;
ACall _t3;
PopParams 4;
EndFunc;

11/12/13

27

Dissecting TAC

Derived Vtable
Code for
Derived.hi

fp of caller

ra of caller

4 Param 1

int main() {

Base Db;
b = new Derived;
b.hi();

main:

BeginFunc 20;
_to = 4;
PushParam _t0;
b = LCall _Alloc;
PopParams 4;
_tl = Derived;
*b = _tl;

_t2 = *b;

_t3 = *_t2;
PushParam b;
ACall _t3;
PopParams 4;
EndFunc;

Dissecting TAC

int main() {

Derived Vtable

Code for
Derived.hi

fp of caller

ra of caller

4 Param 1

}

Base Db;
b = new Derived;
b.hi();

main:

BeginFunc 20;
_to = 4;
PushParam _tO0;
b = LCall _Alloc;
PopParams 4;
_tl = Derived;
*b = _tl;

_t2 = *b;

_t3 = *_t2;
PushParam b;
ACall _t3;
PopParams 4;
EndFunc;

11/12/13

28

Dissecting TAC

Derived Vtable
Code for
Derived.hi

fp of caller

ra of caller

(raw memory) b

4 Param 1

int main() {

}

Base Db;
b = new Derived;
b.hi();

main:

BeginFunc 20;
_to = 4;
PushParam _tO0;
b = LCall _Alloc;
PopParams 4;
_tl = Derived;
*b = _tl;

_t2 = *b;

_t3 = *_t2;
PushParam b;
ACall _t3;
PopParams 4;
EndFunc;

Dissecting TAC

int main() {

Derived Vtable
Code for
Derived.hi

fp of caller

ra of caller

(raw memory)

4 Param 1

}

Base Db;
b = new Derived;
b.hi();

main:

BeginFunc 20;
_to = 4;
PushParam _tO0;
b = LCall _Alloc;
PopParams 4;
_tl = Derived;
*b = _tl;

_t2 = *b;

_t3 = *_t2;
PushParam b;
ACall _t3;
PopParams 4;
EndFunc;

11/12/13

29

Dissecting TAC

Derived Vtable
Code for
Derived.hi

fp of caller

ra of caller

(raw memory) b

int main() {

Base Db;
b = new Derived;
b.hi();

main:

BeginFunc 20;
_to = 4;
PushParam _tO0;
b = LCall _Alloc;
PopParams 4;
_tl = Derived;
*b = _tl;

_t2 = *b;

_t3 = *_t2;
PushParam b;
ACall _t3;
PopParams 4;
EndFunc;

Derived Vtable

(raw memory)

Dissecting TAC

Code for
Derived.hi

fp of caller

ra of caller

int main () {

Base Db;
b = new Derived;
b.hi();

_t0 = 4;
PushParam _tO0;

b = LCall _Alloc;
PopParams 4;

11/12/13

30

Dissecting TAC

Derived Vtable

Code for int main() {
Derived.hi Base b;
b = new Derived;
b.hi();
fp of caller }
ra of caller
_t0 = 4;

PushParam _t0;

t1 Allocate
— Object | b = LCall _Alloc;
t2 PopParams 4;
_t3
(raw memory) b

Derived Vtable

(raw memory)

Dissecting TAC

Code for int main() {
Derived.hi Base b;
b = new Derived;
b.hi();
£p of caller }
ra of caller main:
BeginFunc 20;
_t0 = 4;

£1 Allocate) PushParam _to;
- Object | b = LCall _Alloc;
t2 PopParams 4;
- tl = Derived;
t3 *b = tl;
t2 = *b;
b t3 = *_t2;
PushParam b;
ACall _t3;
PopParams 4;
EndFunc;

11/12/13

31

Dissecting TAC

Derived Vtable

Code for int main() {
Derived.hi Base Db;
b = new Derived;
b.hi();
fp of caller }
ra of caller main:
BeginFunc 20;
_t0 = 4;

£1 Allocate) PushParam _to;
- Object | b = LCall _Alloc;
t2 PopParams 4;
- tl = Derived;
t3 *b = tl;
t2 = *b;
b £3 = *_t2;
PushParam b;
ACall _t3;
PopParams 4;
EndFunc;

(raw memory)

Dissecting TAC

Derived Vtable

Code for int main() {
Derived.hi Base Db;

b = new Derived;
b.hi();

fp of caller }

ra of caller main:
BeginFunc 20;
_t0 = 4;

£1 Allocate) PushParam _to;
- Object | b = LCall _Alloc;
t2 PopParams 4;
- tl = Derived;
t3 *b = tl;
t2 = *b;
b t3 = *_t2;
PushParam b;
ACall _t3;
PopParams 4;
EndFunc;

(raw memory)

11/12/13

32

Derived Vtable

Dissecting TAC

Code for
Derived.hi

fp of caller

ra of caller

t1
_t2
t3

Allocate
Object | b = LCall _Alloc;

int main() {
Base Db;
b = new Derived;
b.hi();

}

main:

BeginFunc 20;
_t0 = 4;
PushParam _tO0;

PopParams 4;
_tl = Derived;
*b = _tl;

_t2 = *b;

_t3 = *_t2;
PushParam b;
ACall _t3;
PopParams 4;
EndFunc;

Derived Vtable

Dissecting TAC

Code for
Derived.hi

fp of caller

ra of caller

t3

int main ()

new Derived;

11/12/13

33

Derived Vtable

Dissecting TAC

int main() {

Code for
Derived.hi

fp of caller

ra of caller

t1
_t2
t3

}

Base Db;

b = new Derived;

b.hi();

main:

Allocate

Object

Set
Vtable

BeginFunc 20;
_t0 = 4;
PushParam _tO0;
b = LCall Alloc;
PopParams Z;
_tl = Derived;
*b = _tl;

_t2 = *b;

_t3 = *_t2;
PushParam b;
ACall _t3;
PopParams 4;
EndFunc;

Derived Vtable

Dissecting TAC

int main() {

Code for
Derived.hi

fp of caller

ra of caller

t1
_t2
t3

}

Base Db;

b = new Derived;

b.hi();

main:

Allocate

Object

Set
Vtable

BeginFunc 20;
_t0 = 4;
PushParam _t0;
b = LCall Alloc;
PopParams Z;
_tl = Derived;
*b = _tl;

_t2 = *b;

_t3 = *_t2;
PushParam b;
ACall _t3;
PopParams 4;
EndFunc;

11/12/13

34

Derived Vtable

Dissecting TAC

int main() {

Code for
Derived.hi

fp of caller

ra of caller

t1
_t2
t3

}

Base Db;
b = new Derived;
b.hi();

main:

Allocate

Object

Set
Vtable

BeginFunc 20;
_t0 = 4;
PushParam _tO0;
b = LCall Alloc;
PopParams Z;
_tl = Derived;
*b = _tl;

_t2 = *b;

_t3 = * t2;
PushParam b;
ACall _t3;
PopParams 4;
EndFunc;

Derived Vtable

Dissecting TAC

int main() {

Code for
Derived.hi

fp of caller

ra of caller

t3

}

Base Db;
b = new Derived;
b.hi();

main:

Allocate

Object

Set
Vtable

BeginFunc 20;
_t0 = 4;
PushParam _t0;
b = LCall Alloc;
PopParams Z;
_tl = Derived;
*b = _tl;

_t2 = *b;

_t3 = * t2;
PushParam b;
ACall _t3;
PopParams 4;
EndFunc;

11/12/13

35

Dissecting TAC

Derived Vtable

Code for int main() {
Derived.hi Base b;
b = new Derived;
b.hi();
fp of caller }

ra of caller

*b ;
*_t2;

o M G
Function _t3

Dissecting TAC

Derived Vtable

Code for
Derived.hi

fp of caller
ra of caller

int main() {
Base Db;
b = new Derived;
b.hi();

}

main:
BeginFunc 20;
t0 = 4;
Allocate PushParam _to;
Object | b = LCall _Alloc;
PopParams 4;

Set tl = Derived;
Vtable ;b = t1;
Load t2 = *b;
Function :t3 = *_t2;
PushParam b;
ACall _t3;
PopParams 4;
EndFunc;

11/12/13

36

Dissecting TAC

Derived Vtable

Code for
Derived.hi

fp of caller

ra of caller

int main() {
Base b;
b = new Derived;
b.hil();
}
main:
BeginFunc 20;
_t0 = 4;
Allocate) PushParam _t0;
Object | b = LCall _Alloc;
PopParams 4;

VTable* }4:

Set tl = Derived;
_t3 Vtable | %p = _t1;
b Load [_t2 = *b;
Function)| _t3 = *_t2;
Param 1 PushParam b;

ACall _t3;
PopParams 4;
EndFunc;

Dissecting TAC

Derived Vtable

Code for
Derived.hi

fp of caller

ra of caller

int main() {
Base Db;
b = new Derived;
b.hi();

}

main:
BeginFunc 20;
t0 = 4;
Allocate PushParam _to;
Object | b = LCall Alloc;
PopParams Z;

VTable* }4:

Set tl = Derived;
_t3 Vtable | ¥p = _t1;
b Load [_t2 = *b;
Function _t3 = *_t2;
Param 1 PushParam b;

ACall _t3;
PopParams 4;
EndFunc;

11/12/13

37

Dissecting TAC

Derived Vtable

Code for
Derived.hi

fp of caller

ra of caller

int main() {
Base b;
b = new Derived;
b.hil();
}
main:
BeginFunc 20;
_t0 = 4;
Allocate) PushParam _t0;
Object | b = LCall _Alloc;
PopParams 4;

VTable* }4:

Set tl = Derived;
_t3 Vtable | %p = _t1;
b Load [_t2 = *b;
Function _t3 = *_t2;
Param 1 PushParam b;

ACall _t3;
PopParams 4;
EndFunc;

Dissecting TAC

Derived Vtable

Code for
Derived.hi

fp of caller

ra of caller

int main() {
Base Db;
b = new Derived;
b.hi();

}

main:
BeginFunc 20;
_t0 = 4;
Allocate) PushParam _to;
Object | b = LCall Alloc;
PopParams Z;

Set tl = Derived;
Vtable | ¥p = t1;

Load t2 = *b;
Function :t3 = *_t2;
PushParam b;
ACall _t3;
PopParams 4;
EndFunc;

11/12/13

38

Dissecting TAC

Derived Vtable

Code for int main() {
Derived.hi Base Db;
b = new Derived;
b.hi();
fp of caller }
ra of caller main:
BeginFunc 20;
4 t0 _t0 = 4;
£1 Allocate) PushParam _t0;
— Object | b = LCall _Alloc;
t2 PopParams 4;
- Set tl = Derived;
_t3 Vtable | ¥p = Ct1;
* Load [_t2 = *b;
| vTable* b R IV

PushParam b;
ACall _t3;
PopParams 4;
EndFunc;

OOP in TAC

* The address of an object's vtable can be
referenced via the name assigned to the vtable
(usually the object name).

+ e.g. _t0 = Base;

* When creating objects, you must remember to
set the object's vtable pointer or any method
call will cause a crash at runtime.

- The ACall instruction can be used to call a
method given a pointer to the first instruction.

11/12/13

39

